On Regularized Quasi-Semigroups and Evolution Equations

نویسنده

  • M. Janfada
چکیده

and Applied Analysis 3 Here are some useful examples of regularized quasi-semigroups. Example 2.2. Let {Tt}t≥0 be an exponentially bounded strongly continuous C-semigroup on Banach space X, with the generator A. Then K s, t : Tt, s, t ≥ 0, 2.5 defines a C-quasi-semigroup with the generator A s A, s ≥ 0, and so D D A . Example 2.3. Let X BUC R , the space of all bounded uniformly continuous functions on R with the supremum-norm. Define C,K s, t ∈ B X , by Cf x e−x 2 f x , K s, t f x e−x 2 f ( t2 2st x ) , s, t ≥ 0. 2.6 One can see that {K s, t }s,t≥0 is a regularized C-quasi-semigroup of operators on X, with the infinitesimal generator A s f 2sḟ on D, where D {f ∈ X : ḟ ∈ X}. Example 2.4. Let {Tt}t≥0 be a strongly continuous semigroup of operators on Banach space X, with the generator A. If C ∈ B X is injective and commutes with Tt, t ≥ 0, then K s, t : Ces t−Ts , s, t ≥ 0, 2.7 is a C-quasi-semigroup with the generator A s ATs. Thus D D A . In fact, for x ∈ D, boundedness of C implies that CA s x lim t→ 0 Ces t−Tsx − Cx t C lim t→ 0 es t−Tsx − x t C d ds |t 0 Ts t − Ts x CATsx. 2.8 Now injectivity of C implies that A s x ATsx, and so D D A . Example 2.5. Let {Tt}t≥0 be a strongly continuous exponentially bounded C-semigroup of operators on Banach space X, with the generator A. For s, t ≥ 0, define K s, t T ( g s t − g s ), s, t ≥ 0, 2.9 where g t ∫ t 0 a s ds, and a ∈ C 0,∞ , with a t > 0. We have K s, 0 T 0 C and the C-semigroup properties of {T t }t≥0 imply that CK r, s t CT ( g r t s − g r ) CT ( g r t s − g t r g t r − g r ) T ( g r t s − g t r )T(g t r − g r ) K r t, s K r, t . 2.10 4 Abstract and Applied Analysis So {K s, t }s,t≥0 is a C-quasi-semigroup the other properties can be also verified easily . Also D D A and for x ∈ D, A s x a s Ax. Some elementary properties of regularized quasi-semigroups can be seen in the following theorem. Theorem 2.6. Suppose {K s, t }s,t≥0 is aC-quasi-semigroup with the generator {A s }s≥0 on Banach space X. Then i for any x ∈ D and s0, t0 ≥ 0, K s0, t0 x ∈ D and K s0, t0 A s x A s K s0, t0 x; 2.11

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Some Properties of Solutions to One Class of Evolution Sobolev Type Mathematical Models in Quasi-sobolev Spaces

Interest in Sobolev type equations has recently increased signi cantly, moreover, there arose a necessity for their consideration in quasi-Banach spaces. The need is dictated not so much by the desire to ll up the theory but by the aspiration to comprehend nonclassical models of mathematical physics in quasi-Banach spaces. Notice that the Sobolev type equations are called evolutionary if soluti...

متن کامل

On the Regularization and Stabilization of Approximation Schemes for C0-Semigroups

Many temporal discretization methods for linear evolution equations converge uniformly on compact time intervals at the rate 1 nα only for sufficiently smooth initial data. It is shown that these methods can be regularized such that the new schemes converge ‘in the average’ at the rate 1 nα for all initial data. Examples given include the Crank-Nicholson scheme and the alternating direction imp...

متن کامل

Semigroups and Evolution Equations: Functional Calculus, Regularity and Kernel Estimates

This is a survey on recent developments of the theory of one-parameter semigroups and evolution equations with special emphasis on functional calculus and kernel estimates. Also other topics as asymptotic behavior for large time and holomorphic semigroups are discussed. As main application we consider elliptic operators with various boundary conditions. Semigroups and evolution equations: Funct...

متن کامل

Stability of additive functional equation on discrete quantum semigroups

We construct  a noncommutative analog of additive functional equations on discrete quantum semigroups and show that this noncommutative functional equation has Hyers-Ulam stability on amenable discrete quantum semigroups. The discrete quantum semigroups that we consider in this paper are in the sense of van Daele, and the amenability is in the sense of Bèdos-Murphy-Tuset. Our main result genera...

متن کامل

Rates of approximation and ergodic limits of regularized operator families

We state mean ergodic theorems with rates of approximation for a new class of operator families. Our result provides a unified approach to convergence rates for many particular strongly continuous solution families associated to linear evolution equations such as the abstract Cauchy problem of the first and second order, and integral Volterra equations of convolution type. We discuss in particu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010